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Abstract 
 

This paper presents an AI-based video analytics application deployed on an 
edge-computing device for real-time object detection. The primary objective is to 
demonstrate the acceleration of AI inference and video compression using 
hardware accelerators embedded on RelyUm Time-Sensitive Networking (TSN) 
Endpoint Switch XMC Mezzanines. Detected object information, including 
location and size, is transmitted as hard real-time traffic over TSN, ensuring 
timely and reliable delivery. The implementation aligns with the NATO Generic 
Vehicle Architecture (NGVA) for land systems. The paper outlines the hardware 
and software architecture, describes the design methodology, and discusses the 
implementation results. 
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1. Introduction 

Edge Intelligence (EI), the convergence of edge 

computing and Artificial Intelligence (AI), is 

gaining momentum as a key enabler for low-

latency, high-performance applications. One of 

the most compelling cases for EI is real-time 

video analytics [1]. 

Mission-critical domains such as Aerospace & 

Defense (A&D) impose stringent latency and 

reliability requirements that traditional cloud-

based solutions struggle to meet—particularly 

with the growing resolution of video sources and 

the increasing demand for bandwidth and 

deterministic communication [2] 

To overcome these limitations, edge computing 

platforms equipped with dedicated hardware 

accelerators for video encoding/decoding and 

AI inference have emerged as a practical 

solution. In these systems, inference is 

executed directly at the edge to minimize 

latency, while model training typically remains in 

the cloud, leveraging its extensive 

computational resources  

 

Figure 1: RelyUm AI-enabled XMC-TSN board [3]. 

This paper introduces a real-time AI video 

analytics application focused on detecting road 

signaling cones. The system is deployed on a 

RelyUm edge-computing device, shown in that 

leverages hardware acceleration to execute AI 

inference and video compression efficiently. 

Detected object data—including location and 

size—is transmitted as hard real-time traffic 

over Deterministic Ethernet (Time-Sensitive 

Networking - TSN). The use case is 

implemented within the framework of the NATO 

Generic Vehicle Architecture (NGVA) for land 

systems. 

1.1 Edge Intelligence 

Deep Neural Networks (DNNs) have emerged 

as one of the most powerful tools in artificial 

intelligence, offering solutions to a wide range 

of modern technological challenges. Their 

applications span numerous domains that 

impact everyday life—from autonomous driving 

systems to advanced healthcare diagnostics. 

DNNs excel in learning hierarchical 

representations from raw data, automatically 

extracting high-level features layer by layer 

without the need for manual intervention. In 

many cases, their performance surpasses that 

of human experts in tasks such as image 

recognition, natural language processing, and 

pattern detection. This capability has led to 

DNNs becoming a standard in state-of-the-art 

AI technologies, demonstrating superior 

efficiency and accuracy across a wide array of 

systems and implementations [4]. 

Traditionally, the training and inference of DNNs 

have relied on cloud computing infrastructures, 

taking advantage of their massive 

computational resources. While this approach 

has enabled significant progress, it faces 

limitations in real-time applications due to the 

increasing volume of data generated at the 

network edge. The sheer scale of Big Data 

introduces latency, bandwidth constraints, and 

potential privacy concerns—creating 

bottlenecks that hinder the effectiveness of 

cloud-based DNN processing. 

To address these challenges, Edge Intelligence 

(EI) has emerged as a transformative paradigm. 

EI combines Edge Computing (EC) and AI, 

enabling data processing to occur closer to the 

data source—at the edge of the network. By 

offloading computing tasks from the cloud to 

edge devices, EI reduces latency, increases 

responsiveness, and supports real-time 

decision-making. 

The integration of DNNs into edge devices 

enables distributed and collaborative inference 

strategies, where models can be partially or fully 

executed on local hardware. This architecture is 

particularly valuable in time-critical 

environments such as autonomous systems, 
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industrial automation, and smart surveillance, 

where immediate insights from data are 

essential. 

1.2 Convolutional Neural Network 

for Real-Time Video Analytics 

DNNs have become foundational tools in 

modern artificial intelligence, offering 

transformative capabilities across sectors 

where precision, autonomy, and situational 

awareness are paramount. Within this broad 

category, Convolutional Neural Networks 

(CNNs) have emerged as a key enabler of real-

time visual analytics, particularly in mission-

critical applications such as autonomous 

navigation, target recognition, and perimeter 

surveillance—core to A&D operations [5]. 

In such high-assurance environments, systems 

must operate under stringent constraints: low 

latency, high reliability, and deterministic 

performance, often in the absence of cloud 

connectivity. To meet these requirements, 

CNNs are increasingly deployed on edge-

computing platforms, where sensor data is 

processed locally on ruggedized, resource-

constrained devices. These edge systems are 

capable of executing AI inference in real time, 

enabling fast decision-making without relying on 

external communication links—an essential 

feature for tactical platforms and autonomous 

systems operating in contested or disconnected 

environments. 

Object detection at the edge relies on CNNs to 

parse images into regions, extract features, and 

identify object locations and classes in real time. 

Several network architectures have been 

developed for this task: R-CNN, which 

generates region proposals before 

classification; SSD (Single Shot Detector) , 

which integrates object localization and 

classification in a single pass; RetinaNet, which 

uses focal loss to improve detection in 

imbalanced datasets; YOLO (You Only Look 

Once), which provides ultra-fast inference by 

framing detection as a single regression 

problem across the entire image. 

This use-case adopts YOLO due to its high 

inference speed and suitability for real-time 

applications. These characteristics make it well-

matched for A&D scenarios such as real-time 

battlefield awareness, vehicle hazard detection, 

and UAV-based surveillance, where quick and 

accurate responses are critical [6]. 

YOLO typically leverages Darknet as its 

convolutional backbone. The network divides 

an image into a grid, with each cell predicting 

multiple bounding boxes and associated class 

probabilities. Each detection includes: 

Bounding box coordinates (x, y, width, height); 

a confidence score indicating object presence 

and, the predicted object class.  

Low-confidence predictions are filtered, 

resulting in a compact, actionable set of 

detections suitable for downstream processing. 

To ensure the robust deployment of such 

systems in the A&D domain, this solution is 

implemented on a deterministic, edge-ready 

platform leveraging RelyUm technology. As an 

example, RELY-TSN12 (12-ports TSN bridge) 

and RELY-TSN-PCIe (TSN PCIe NIC), provide 

Time-Sensitive Networking (TSN) and 

Deterministic Ethernet support, ensuring 

reliable and bounded-latency communication. 

These features are essential for integrating real-

time AI analytics into NGVA-compliant land 

systems, avionics payloads, or ISR platforms, 

where timing precision and interoperability with 

legacy systems are non-negotiable. 

1.3 Time-Sensitive Networking in the 

context of NATO Generic 

Architecture for Land Systems 

Since its standardization in 1983, Ethernet has 

evolved far beyond its original scope as a local 

networking solution for computer systems. 

Today, Ethernet has become the de facto 

standard for fieldbus communication across a 

wide range of industries, including industrial 

automation, energy, automotive, and 

increasingly, the A&D sector. 

However, the traditional Ethernet lacked native 

support for real-time communication, a critical 

requirement in military and safety-critical 

systems. While various proprietary solutions 

were developed to address these limitations, 

their lack of interoperability created vendor lock-

in and increased integration complexity. 

To overcome these constraints, the IEEE TSN 

Task Group introduced a suite of open 
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standards that extend Ethernet with 

deterministic communication capabilities [7]. 

Originally stemming from the Audio Video 

Bridging (AVB) initiative, TSN ensures 

predictable latency, low jitter, and guaranteed 

delivery times over standard Ethernet 

infrastructure. 

At the core of TSN is the Time-Aware Shaper 

which structures network traffic into repetitive 

cycles. Each cycle is divided into time slots 

assigned to different traffic classes, enabling 

coexistence of high-priority scheduled traffic 

with best-effort and reserved streams. This 

mechanism ensures that critical data—such as 

control messages or sensor fusion results—are 

transmitted with guaranteed timing, even under 

high network load. 

 

Figure 2: Example of a basic, two slot, TSN 
configuration. 

Figure 2 illustrates a simplified example of TSN 

scheduling, where scheduled traffic is isolated 

from lower-priority communication, preserving 

quality of service (QoS) across the network. In 

typical deployments, up to eight distinct traffic 

classes can be scheduled within each 

communication cycle, offering flexible control 

over latency and bandwidth allocation. 

The NGVA defines standardized and modular 

architecture for land-based military platforms, 

as specified in the AEP-4754 standard [8]. 

NGVA promotes interoperability, modularity, and 

reuse across NATO member systems, reducing 

integration complexity and lifecycle costs. 

One of the most challenging aspects of NGVA-

compliant system design is ensuring support for 

real-time and deterministic communication 

between heterogeneous subsystems—ranging 

from fire control systems to sensor fusion units 

and mission management components. This is 

precisely where TSN becomes essential. 

NGVA mandates the use of Ethernet at the Data 

Link Layer for all inter-subsystem 

communication. As shown in Figure 3, Volume 

III of AEP-4754 defines the NGVA Data 

Infrastructure, which encompasses multiple 

layers: User Application, Data Model, Transport, 

Network, and Data Link/Physical. While the 

application layer remains system-specific, all 

other layers are standardized to support 

consistent communication semantics, 

bandwidth guarantees, and timing precision 

across all compliant nodes. 

 

Figure 3: Definition of NGVA data infrastructure [8]. 

By integrating TSN into NGVA-based systems, 

military platforms benefit from: Deterministic 

data delivery for control and mission-critical 

functions; reduced latency for real-time video; 

navigation and targeting systems; 

interoperability among multi-vendor equipment; 

scalability and standardization for future 

upgrades. 

2. SoC Architecture for AI Video 

Processing Acceleration 

2.1  High Level Architecture 

The integration of AI with FPGA-based systems 

represents a powerful solution for meeting the 

stringent performance and reliability 

requirements of real-time applications in A&D. 

Particularly in scenarios involving unmanned 

platforms, autonomous vehicles, or surveillance 

systems, this combination offers low-latency 

inference, deterministic communication, and 

optimal power efficiency at the tactical edge. 

In this context, this work presents a hardware-

accelerated AI system for drone-sized object 

detection, implemented on the RelyUm TSN 

Endpoint Switch XMC Mezzanine (XMC-10TSN 

series). This module integrates the AMD-Xilinx 

Zynq® UltraScale+™ MPSoC, which provides a 
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robust platform for high-performance Edge 

Intelligence. The system is specifically designed 

to address real-time processing and low-latency 

communication needs in embedded, mission-

critical environments. 

To ensure rapid object identification and prompt 

communication to other subsystems, the 

architecture relies on two principal components. 

First, the Zynq UltraScale+ device incorporates 

a Deep Learning Processor Unit (DPU) within 

its programmable logic, which performs the 

inference of convolutional neural networks 

(CNNs) trained for this task. Second, a Time-

Sensitive Networking (TSN) switch IP block 

(SocTek) embedded in the same FPGA fabric 

handles the transmission of crucial 

information—such as object size and location—

over a deterministic Ethernet link. This 

configuration aligns with the IEEE 802.1 TSN 

standard and is key for enabling synchronized 

and predictable communication across the 

vehicle network. 

 

Figure 4: High-Level Architecture of the AI-TSN 
acceleration system implemented on the MPSoC 

device of RelyUm XMC board. 

As shown in Figure 4, the hardware architecture 

is composed of a close interaction between the 

Programmable Logic (PL) and the Processing 

System (PS) sections of the Zynq device. On 

the software side, a Linux-based operating 

system runs on the PS, supported by libraries 

and tools such as GStreamer for multimedia 

handling, the Xilinx Vitis Video Analytics SDK 

(VVAS), DPU runtime components, and custom 

application software. These elements manage 

the capture, processing, and interpretation of 

video streams from onboard sensors. 

The PL portion handles the critical acceleration 

tasks. The DPU is tailored for convolutional 

network inference and is configurable according 

to application needs, allowing for different levels 

of parallelism and performance, depending on 

available logic resources and architectural 

parameters. The TSN switch implemented in 

programmable logic ensures that data flows 

through the network with guaranteed bandwidth 

and latency, a requirement for applications 

where timing precision is crucial. 

Additional processing is provided by a Multi-

Scaler IP, which prepares video input by 

adjusting resolution, scaling, and color 

parameters to match the CNN’s expected 

format. Video encoding and decoding are 

handled by the Video Codec Unit (VCU), which 

implements H.264/H.265 compression 

standards in hardware. While codec 

acceleration resides in the PL, video interfaces 

such as HDMI, DisplayPort, and MIPI-CSI are 

handled by the PS domain, ensuring complete 

system integration and performance 

optimization. 

This integrated platform, leveraging RelyUm’s 

TSN switching capabilities and the compute 

density of the Zynq MPSoC, illustrates a 

practical and efficient approach for deploying 

AI-based situational awareness in Aerospace 

and Defence platforms. It provides a foundation 

for high-speed, deterministic communications 

and robust AI inference at the tactical edge—

ideal for real-time detection, tracking, and 

decision-making in critical missions. 

2.2 Desing and Data Flow 

Proper training of the neural network is critical 

for achieving optimal performance in the 

deployment of AI-based real-time detection 

systems. In this implementation, the neural 

network is tailored for the detection of road 

cones—an application relevant to autonomous 

navigation and unmanned ground vehicle 

perception within the A&D domain. 

The development process involves several key 

phases: selecting and preparing the dataset, 

adjusting the YOLO network parameters, 

training and validating the model, quantizing the 
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network for deployment, and generating an 

implementable model compatible with the 

system's DPU IP. These steps leverage the 

Darknet AI framework, which provides both the 

YOLO architecture and the GPU-accelerated 

compiler for efficient model training. 

Quantization and deployment are performed 

using the Xilinx Vitis AI toolkit, which transforms 

the trained model into a version suitable for 

execution at the edge. 

The training dataset includes a variety of image 

types to ensure model robustness across 

different operational scenarios. These images 

vary in resolution, color fidelity, lighting 

conditions, object positioning, and cone density. 

Prior to training, annotation files are generated 

containing the class labels and the positional 

vectors of objects in each image. The YOLO 

network is trained using the Darknet compiler 

on a GPU to accelerate convergence. The 

resulting model achieves a classification 

accuracy of 96%. 

To enable efficient inference on edge devices, 

model quantization is essential. This process 

reduces the computational load by converting 

the 32-bit floating-point weights and activations 

into 8-bit integer values. Despite this reduction, 

quantization must preserve the model's 

accuracy to maintain detection reliability in 

mission-critical contexts. Vitis AI, in conjunction 

with the TensorFlow framework, is used to 

perform this quantization and to compile the 

model for the target DPU architecture. The 

resulting file includes all necessary instructions 

and runtime information for real-time inference 

execution. 

 

Figure 5: High level overview of the dataflow in the 
AI-TSN object detection application. 

Figure 5 summarizes the data flow- The 

complete system utilizes the GStreamer 

framework for managing video flows over RTSP, 

coordinating image capture, preprocessing, AI 

inference, bounding box generation, and data 

transmission. Video frames enter and exit the 

system encoded in H.264, with the VCU 

decoding them into raw data. This raw video is 

then preprocessed by the Multi-Scaler IP, which 

converts the NV12 image format to BGR and 

resizes the frame to the 416×416 resolution 

expected by the YOLO network. 

Once the video data is prepared, the DPU IP 

block performs accelerated inference, 

identifying objects and extracting vector-based 

information such as location, dimensions, and 

class confidence. This information is used to 

generate bounding boxes, which visually 

represent detected objects. The bounding box 

data, along with processed video, is transmitted 

via Time-Sensitive Networking (TSN) to other 

subsystems within the vehicle or platform. 

To ensure interoperability and real-time 

performance, the system classifies outgoing 

traffic according to the NGVA standard and 

maps it onto TSN traffic classes: 

• Hard real-time traffic: This includes the 

location and size of bounding boxes, 

which are critical for control and 

response functions. It is transmitted as 

Scheduled Traffic, with dedicated time 

slots in the TSN cycle, using a 

customized NGVA Brake Model 

message format. 

• Soft real-time traffic: The annotated 

video stream, containing bounding 

boxes overlaid on the original feed, is 

sent to display systems as Reserved 

Traffic. While latency is minimized, this 

traffic does not require the same strict 

timing guarantees as scheduled data. 

• Best-effort traffic: All remaining non-

critical communications are transmitted 

using the Best-Effort TSN class and 

share a slot with the video stream, 

accommodating background and non-

time-sensitive data. 

By combining hardware-accelerated AI 

processing, deterministic TSN-based 

communication, and adherence to NGVA 

standards, the proposed system delivers a 

robust, real-time perception capability for 

Aerospace and Defence applications. It ensures 

accurate and low-latency object detection with 

guaranteed Quality of Service (QoS), suitable 
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for integration into autonomous or crew-

assisted mission systems. 

2.3 Desing and Data Flow 

For evaluation purposes, the system was tested 

using HD video streams at a resolution of 

1280×720 pixels and a frame rate of 25 FPS. 

Several DPU architectures were explored 

during implementation, specifically the B4096, 

B3136, B2304, and B1600 configurations. Due 

to resource constraints on the hardware 

platform, the two most computationally 

demanding architectures (B4096 and B3136) 

were implemented with a single DPU core, 

whereas the B2304 and B1600 configurations 

allowed dual-core implementations, enabling 

greater parallelism. 

Among all the evaluated configurations, the 

B4096 DPU architecture delivered the best 

latency performance and was, therefore, 

selected for the final system implementation. 

This version of the system executes the 

complete neural network inference pipeline with 

minimal processing delay, ensuring fast object 

detection suitable for real-time Aerospace and 

Defense applications, such as autonomous 

navigation and threat avoidance. The total 

latency for the capture, inference, and 

communication processes is approximately 80 

ms. The DPU data controller operates at 250 

MHz, and the DSP segments within the 

compute unit module are clocked at 500 MHz. 

The VCU also runs within the 250 MHz domain 

of the DPU controller. The bootneck, in this 

case, has been identified in the video source 

used in the test set-up. 

 

Figure 6: Generated TSN traffic combining Real-

Time and Best-effort traffic. 

Figure 6 shows the traffic distribution associated 

with the Time-Sensitive Networking (TSN) 

configuration used in the test setup. One 

dedicated slot is reserved for the transmission 

of control data using a customized NGVA Brake 

model frame format, while the post-processed 

video stream is transmitted within a shared slot 

alongside best-effort traffic, maintaining 

deterministic communication behavior. 

3. Conclusions 

This work demonstrates the feasibility and 

efficiency of deploying Edge AI vision systems 

for real-time object detection in NGVA-

compliant land vehicle platforms. By integrating 

hardware-assisted neural network inference 

using AMD-Xilinx Zynq UltraScale+ MPSoC 

devices with time-sensitive networking (TSN) 

communication, the proposed solution achieves 

low-latency performance that meets the 

stringent real-time requirements of defense-

grade vehicular systems. 

The system leverages the powerful combination 

of a DPU and deterministic Ethernet enabled 

through a RelyUm TSN Endpoint Switch XMC 

Mezzanine (XMC-10TSN series), ensuring 

precise detection, fast inference, and 

predictable transmission of critical situational 

awareness data. The use of the SOC-E TSN 

technology enables seamless interoperability 

and QoS-compliant data exchange among 

NGVA sub-systems such as perception, 

actuation, and control units. 

By aligning with the NGVA framework and 

leveraging scalable FPGA-based edge 

computing, the implementation not only 

enhances the autonomy and responsiveness of 

ground vehicles but also ensures compliance 

with modular, future-proof system integration 

standards. The modularity of the solution, its 

efficient use of TSN for real-time data delivery, 

and its capability to run complex AI models at 

the tactical edge confirm its suitability for next-

generation defense mobility applications. 

Future developments may include the extension 

of this framework to multi-sensor fusion 

scenarios, secure edge inference, and real-time 

system monitoring—all supported by RelyUm’s 

portfolio of TSN-capable hardware and software 

solutions tailored for Aerospace & Defense 

systems. 
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